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REVISITING OPTIMAL DELAUNAY TRIANGULATION FOR 3D
GRADED MESH GENERATION∗
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Abstract. This paper proposes a new algorithm to generate a graded three-dimensional tetrahe-
dral mesh. It revisits the class of methods based on optimal Delaunay triangulation (ODT) and pro-
poses a proper way of injecting a background density function into the objective function minimized
by ODT. This continuous/analytic point of view leads to an objective function that is continuous and
Delaunay consistent, in contrast with the discrete/geometrical point of view developed in previous
work. To optimize the objective function, this paper proposes a hybrid algorithm that combines a
local search (quasi-Newton) with a global optimization (simulated annealing). The benefits of the
method are both improved performances and an improved quality of the result in terms of dihedral
angles. This results from the combination of two effects. First, the local search has a faster speed
of convergence than previous work due to the better behavior of the objective function, and second,
the algorithm avoids getting stuck in a poor local minimum. Experimental results are evaluated and
compared using standard metrics.
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1. Introduction. The quality of a tetrahedral mesh can tremendously affect the
accuracy and efficiency of a finite element simulation [27]. A large body of work exists
for generating tetrahedral meshes. Among these, the optimization-based methods—
also called variational by some authors—have attracted much attention as they are
capable of handling domains of complex shapes and topology in a consistent man-
ner based on energy minimization. In this paper, we study the optimal Delaunay
triangulation (ODT) for three-dimensional (3D) graded mesh generation.

ODT is defined as the minimizer of an objective function [2]. It has been shown [1]
to be very effective in suppressing slivers, which are tetrahedra with near-zero volume
but quite proper faces; for example, four evenly spaced vertices near a great circle
of a sphere give rise to a sliver, as shown in Figure 1. Slivers have very small (near
zero) and very large (near π) dihedral angles, which cause poor numerical conditions
in simulation and are notoriously hard to remove. Hence, the ability of ODT to
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Fig. 1. A sliver with four evenly spaced vertices near a circle.

suppress slivers makes it a natural candidate for defining an objective function. Some
modification of ODT allows us to generate a graded tetrahedral mesh, such that the
size of the tetrahedra match a predefined background density function [32].

This paper introduces a method to improve both the speed and the quality of
ODT-based mesh optimization, based on the following contributions:

• a proper formulation of the ODT objective function used to generate graded
meshes, that satisfies more properties than previous work [32]: it is continuous
and Delaunay consistent (section 3);
• linear quadratures for estimating the gradient of the ODT energy function
(section 4.2) that improve the speed of convergence as compared with the one-
point quadratures used in previous work [3] (see the comparison in Figure 9);
• a hybrid optimization algorithm that combines a quasi-Newton solver (L-
BFGS) with a global optimization method (simulated annealing) to find a
better minimum of the energy function (section 4.3);
• some hindsight about the sliver-suppressing properties of ODT (section 5.3).

2. Previous work. A comprehensive survey of mesh generation methods is be-
yond the scope of this paper; the reader is referred to the surveys in [13] and [29]. We
restrict ourselves to the previous work directly related with our approach, based on
the numerical optimization of an energy function and Delaunay triangulation (DT).

2.1. Optimization-based methods. Meshing methods of this class can be
characterized according to three notions, energy function, Delaunay consistence, and
numerical optimization, defined below.

Energy function. Given a compact domain Ω ⊂ R
3 and a set of vertices X =

{xi}ni=1 ⊂ Ω, the quality of a tetrahedral mesh of Ω using X as the vertex set depends
on the connectivity T of the vertices X, as well as the positions of the vertices. Hence,
an energy function (or a quality measure function) of a mesh has the form F (X, T ).
In general, the optimization of F (X, T ) is nontrivial, since it is the combination of
combinatorial optimization (over T ) and numerical optimization (over X). A typical
solution mechanism is to alternatively minimize F (X, T ) over T with X fixed, and
then minimize F (X, T ) over X with T fixed.

Delaunay consistence. Due to its shape optimality, the Delaunay triangulation
is widely adopted to determine the connectivity T for fixed X. An energy function
F (X, T ) is said to be Delaunay consistent if for any fixed X, F (X, T ) attains its
minimum when T is the Delaunay triangulation of X. An energy function F (X, T )
that is Delaunay consistent is preferred, since it decouples the combinatorial variables
from the numerical ones. The combinatorial optimization only needs to compute a
Delaunay triangulation, for which fast methods are available (e.g., CGAL, QHULL).

Numerical optimization. Several methods can be used to minimize F (X, T ) over
the continuous positions of the vertex X with fixed T . Besides the selection of an
appropriate method, one critical issue is to obtain accurate gradients of F (X, T ) to
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Fig. 2. Illustrations of CVT (left) and ODT (right) energies.

ensure fast convergence. For a Delaunay consistent function F (X, T ), we note that
the convergence of its minimization also depends on the smoothness of F (X, T ) when
the connectivity T changes due to the continuous change of the vertices X (more on
this later).

Several energy functions were proposed, such as angles [12], tetrahedral condition
number [11], simplicial element Jacobian norm [21], and mean-ratio metric [6]. A
main problem with the majority of these methods is that their energy is not Delaunay
consistent. Moreover, the resulting objective functions can be highly nonconvex and
nonsmooth, making it hard to minimize.

Centroidal Voronoi tessellation (CVT) [7] has been well studied and successfully
applied to isotropic meshing [8] and anisotropic meshing [9], mainly computed by
Lloyd’s method. Liu et al. [22] showed that the CVT energy has C2 continuity and
proposed to use the L-BFGS method, a variant of the quasi-Newton method, that
outperforms the Lloyd’s method for CVT computation. However, when applied to
3D mesh generation, CVT may generate a large number of slivers.

ODT was introduced by Chen and Xu [5]. Alliez et al. [1] observed that the ODT
method performs better than CVT in terms of removing slivers. This is because the
ODT energy directly measures the quality of a triangulation, while the CVT energy
is formulated in terms of its dual structure (Voronoi diagram) and therefore does not
penalize slivers. We now review the uniform and weighted cases.

2.2. Uniform ODT.
Definition. Let Ω denote the convex hull of a set of points X = {xi}ni=1 in R

d.
Let T be a triangulation of X. Lifting up the xi to the paraboloid f(x) = ‖x‖2, we
obtain the set of projected vertices X′ = {x′

i}ni=1 ⊂ R
d+1, where x′

i = (xi, ‖xi‖2) (see
Figure 2). Let fI(x) be the piecewise linear interpolant of the vertices x′

i over the
triangulation T . Then the ODT energy EODT(X, T ): Ωn → R is defined as the L1

interpolation error of f(x) by fI(x), that is,

EODT(X, T ) =
∑
τ∈T

∫
τ

|fI(x)− f(x)|dx.(2.1)

ODT is the global minimizer of EODT(X, T ). In practice, since one usually can only
compute a local minimizer of the nonconvex function EODT(X), we will still use the
term “ODT” to refer to a triangulation given by a local minimizer of EODT(X). Then,
our goal is to minimize EODT(X, T ) to compute a triangulation of the domain Ω, with
the positions of the sites X and their connectivity subject to optimization.

Property. EODT(X, T ) is Delaunay consistent [5]. This follows from the obser-
vation that the volume EODT(X, T ) is minimized when the polyhedron of fI(x) is
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the lower convex hull CH(X′) of X′ = {x′
i}i=1 and the fact that the Delaunay trian-

gulation of X is the projection of CH(X′) onto R
d (see Figure 2). Consequently, we

will omit the triangulation T in EODT(X, T ) and always use the DT of X by default,
since we are primarily interested in the minimization of EODT(X, T ).

Alternative formulations. EODT(X) is also given by

EODT(X) =
1

d+ 3

n∑
i=1

∫
Ωi

‖x− xi‖2dx,(2.2)

where Ωi is the first-ring neighborhood of xi [2].
1

Existing solution mechanisms. The stationary point of (2.2) suggests a vertex
update formula, proposed in [2] and modified in [1, 32]. The method iteratively applies
the following two steps: (1) (connectivity update) compute the DT of the current
vertices; (2) (position update) pick a vertex xi and move it to the new location:

x∗
i =

1

|Ωi|
∑
τ∈Ωi

|τ |ck,(2.3)

where |τ | is the volume of τ . That is, x∗
i is the volume-weighted average of the

circumcenters of all the simplices incident to xi. We will refer to this method as the
averaged Voronoi vertex (AVV) method.

2.3. Weighted ODT. Graded meshes can be generated by considering the in-
terpolation error to an arbitrary convex function f in (2.1) with the Hessian of f
serving as a metric [4]. However, this is rather restrictive, because in general there
does not exist a function whose Hessian matches a given arbitrary Riemannian metric.
We now consider using a weighted extension of the ODT energy that takes a density
function ρ(x) into account.

A first possibility [2] is obtained by inserting the density ρ(x) into (2.2), which
yields

Ẽρ
ODT(X, T ) = 1

d+ 3

n∑
i=1

∫
Ωi

ρ(x)‖x− xi‖2dx.(2.4)

To minimize this energy, Alliez et al. [1] used the discrete point of view, which makes a
geometrical interpretation of the AVV vertex update rule (equation (2.3)). With this
point of view in mind, they multiply the weights by the background density function,
thus yielding the vertex update formula

x∗
i =

1∑
τ∈Ωi

|τ |ρ
∑
τ∈Ωi

|τ |ρck,

which is obtained by replacing in the AVV update formula (2.3) the volume |τ | of the
simplex τ in (2.3) by its weighted volume |τ |ρ =

∫
τ ρ(x)dσ. A variant called NODT

was introduced in [32] that optimizes both the interior vertices and the vertices on
the boundary.

The second extension [3], which we study in this paper, is obtained by inserting
the density ρ(x) into the ODT expression in (2.1):

Eρ
ODT(X, T ) =

∑
τ∈T

∫
τ

ρ(x)|fI(x) − x2|dx.(2.5)

1Note that the coefficient 1
d+1

in [2] is incorrect.
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Fig. 3. Empirical comparison of the continuity of CVT (C2 but generates slivers), Ẽρ
ODT

(discontinuous), and energy Eρ
ODT (C0 but not C1). The Delaunay triangulation is used by default

in Ẽρ
ODT and Eρ

ODT.

The gradient and Hessian matrix of this energy function are difficult to compute.
For this reason, Chen and Holst [3] proposed a one-point quadrature to estimate the
gradient and the Hessian matrix, and they minimize the energy with Newton-type
iterations. We propose a better approximation of the gradient, leading to a more
efficient solution mechanism.

3. Revisiting weighted ODT. The two extensions Ẽρ
ODT (2.4) and Eρ

ODT (2.5)
are identical if the density function ρ(x) is constant. For general density, there are
some important differences.

As shown in Figure 3, we conducted a simple numerical experiment with a
two-dimensional (2D) triangulation of eight vertices. One of the vertices moves
along a straight line parameterized by t, and we plot the different energies (CVT,
Ẽρ

ODT(X, DT ), and Eρ
ODT(X, DT )) as a function of t to compare their continuity. The

Ẽρ
ODT in (2.4), in general, is not Delaunay consistent. Moreover, it is not continuous

when the Delaunay triangulation of the variable point set X changes its connectivity.
Besides these empirical observations, we now further characterize the properties of
Eρ

ODT and prove the following properties.
Theorem 3.1. The ODT function Eρ

ODT in (2.5) is Delaunay consistent.
Proof. Let f∗

I (x) be the piecewise linear interpolant of f(x) = x2 based on the
Delaunay triangulation DT (X) of X. Let fI(x) be a piecewise linear interpolation
of f(x) based on any triangulation T of DT (X). Since f∗

I (x) is given by the lower
convex hull of the lifted points X′ on the paraboloid, for any point x in the domain,
we have

fI(x)− f(x) ≥ f∗
I (x) − f(x) ≥ 0.

It follows that

ρ(x)|fI(x)− f(x)| ≥ ρ(x)|f∗
I (x)− f(x)|.

Hence,

DT (X) = argmin
T

Eρ
ODT(X, T ).

This completes the proof.
In other words, for a fixed X, the optimal triangulation that minimizes the ODT

energy function among all triangulations is the Delaunay triangulation. This deter-
mines the combinatorial parameters T , and we can now consider that Eρ

ODT only
depends on X.
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We shall now confirm that replacing the (discontinuous) Ẽρ
ODT energy used in

previous work with Eρ
ODT gains one order of continuity.

Theorem 3.2. Suppose that the density function ρ(x) is C2 in Ω. Then the
ODT function Eρ

ODT(X, T ) in (2.5) is a C0 function. Note that the ODT function is
in general not C1. Specifically, it is a piecewise C2 function in Ωn and has only C0

but not C1 contact between the pieces.
Proof. Because the ODT function Eρ

ODT(X) has different expressions for Delaunay
triangulations DT (X) with different ways of connectivity, it is defined in Ωn in a
piecewise way. Each piece corresponds to a subset of Ωn whose points have Delaunay
triangulations of the isomorphic connectivity.

First consider the smoothness of the Eρ
ODT(X) at an interior point X0 of a piece.

The expression of Eρ
ODT(X) does not change within a sufficiently small neighborhood

of X0. Each term of Eρ
ODT(X0) defined over a tetrahedron τ which is

Eτ (X0) =

∫
τ

ρ(x)|fI(x) − x2|dx

has an integrand that is a C2 function in x; furthermore, the integration domain τ
changes smoothly with respect to the vertex positions. Hence, Eτ (X) is C2 continuous
at X0. So is Eρ

ODT(X).
Now consider the smoothness of Eρ

ODT(X) at the interface between different
pieces, where the connectivity of the Delaunay triangulation DT (X) changes. With-
out loss of generality, we consider the case when five vertices shared by two or three
adjacent tetrahedra (as shown in Figure 4) come to lie on the same sphere in three
dimensions. The Delaunay triangulation in three dimensions changes its connectivity,
therefore admitting multiple Delaunay triangulations.

Let {xi}5i=1 denote these five co-spherical points. Let c and r denote the center
and radius of the sphere, respectively. Any point x on the circle satisfies

‖x‖2 − 2x · c+ ‖c‖2 = r2.

The five points {xi}5i=1 are lifted up to the five points {x′
i}5i=1 on the paraboloid

(x, z) ∈ R
4 that lies on the same hyperplane defined by

z − 2x · c+ ‖c‖2 − r2 = 0

since z = ‖x‖2.
Let T (consisting of two tetrahedra τ1 and τ2) and T (consisting of three tetra-

hedra τ1, τ2, and τ3) be the two Delaunay triangulation of {x′
i}5i=1, as shown in
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Figure 4. Clearly, the function fI(x) evaluated using these two triangulations has the
same value, because the lifted points {x′

i}5i=1 are coplanar in the space. It follows that

Eτ1(X0) + Eτ2(X0) = Eτ1(X0) + Eτ2(X0) + Eτ3(X0).

That is, the different expressions of the ODT function given by two adjacent pieces
have equal values at their interface. Hence, the ODT function is a C0 function. The
fact that it is not C1 is easily established by numerical verification using a specific
example. We will skip the details here.

The solution mechanism described in the next section needs the expression of the
gradient of Eρ

ODT(X). If X has co-cyclic points, then the gradient is undefined; else
it is given by the following theorem.

Theorem 3.3. The gradient of the ODT energy function Eρ
ODT(X) with density

ρ(x) is given by

∂Eρ
ODT(X)

∂xi
=
∑
τ∈Ωi

∫
τ

ρ(x)
∂fI(x)

∂xi
dx,(3.1)

where Ωi is the first-ring neighborhood of the vertex xi.
Proof. First recall the gradient in the case of uniform density ρ(x) = 1 [1],

∂EODT (X)

∂xi
=

2|Ωi|
d+ 1

(xi − |Ωi|−1
∑
τ∈Ωi

|τ |ck),(3.2)

where ck is the circumcenter of the triangle τ .
With a density ρ(x), the gradient of ODT function in (2.5) can be derived as

follows. Consider the ODT energy on the 1-ring neighborhood Ωi of vertex xi. By
(2.5), we have

Eρ
ODT (xi) ≡

∑
τ∈Ωi

∫
τ

ρ(x)fI(x)dx −
∫
Ωi

ρ(x)f(x)dx,

which contains all the terms in Eρ
ODT(X) involving xi. It follows that

∂Eρ
ODT(X)

∂xi
=
∑
τ∈Ωi

∂

∂xi

∫
τ

ρ(x)fI(x)dx.(3.3)

Here, xi is involved in both the integrand and the integral domain of the integral terms.
So we need to take into account the variation of the integral domain in differentiation
as well. To simplify this formula, we need to recall the general Leibniz rule. Suppose
that Dt is a time-varying domain. The velocity vector of a point on the domain
boundary ∂Dt is v = ∂x/∂t. Let n be the outward unit normal vector of ∂Dt. Then
for a smooth function g(x, t),x ∈ Dt, the general Leibniz rule [10] states

d

dt

∫
Dt

g(x, t)dx =

∫
∂Dt

g(x, t)v · ndσ +

∫
Dt

∂g(x, t)

∂t
dx,

where dσ is the area element on ∂Dt.
Applying the general Leibniz rule to (3.3), we see that the integral terms over

the boundaries of the τ will cancel out due to opposite orientations. Let Ωi be the
complete 1-ring neighborhood of xi. We have

∂Eρ
ODT(X)

∂xi
=
∑
τ∈Ωi

∫
τ

ρ(x)
∂fI(x)

∂xi
dx.(3.4)
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Fig. 5. Behavior of L-BFGS applied to Eρ
ODT.

Note that fI(x) is a quadratic function of xi on τ , so its derivative can easily be
obtained. This completes the proof.

4. Solution mechanism.

4.1. Reaching a local minimumwith L-BFGS. Minimizing the ODT energy
function is difficult because the function is nonconvex and nonsmooth (i.e., merely
C0). A common method is the local relaxation method which moves only one vertex
at a time, like the AVV method mentioned in section 2.2. Alliez et al. [1] proposed
to move all the vertices simultaneously and globally update the connectivity in every
iteration. This treatment, though making computation faster, does not guarantee
decreasing of the ODT energy. Chen and Holst [3] applied Newton’s method to the
minimization of ODT energy with the positions of vertices subject to optimization.
They called it the “global” method, and showed that it significantly accelerates the
convergence [3].

Newton’s method, though converging quadratically, is not suitable for a large-
scale problem due to the prohibitive cost of computing and storing the inverse Hes-
sian matrix. We propose to apply a quasi-Newton method, specifically the L-BFGS
method [24], to computing the ODT. Briefly, the L-BFGS method reduces greatly the
time of each iteration by using accumulated gradient information to approximate the
inverse Hessian, while maintaining fast convergence.

The L-BFGS method, like other Newton-type methods, is applied to functions
with sufficient smoothness (i.e., C2). The Eρ

ODT function that we minimize is theo-
retically not smooth enough (C0). However, a specific property of Eρ

ODT (Delaunay
consistence) results in good performances of L-BFGS.

The Delaunay consistence of the ODT function means that its graph is the lower
envelope of the set of all expressions with different triangulation of X. The one-
dimensional analogue of such a function is illustrated in Figure 5 (see also Figure 3),
with its graph characterized by nonconvex C0 kinks; this is a property not pos-
sessed by arbitrary C0 functions. Now suppose that the L-BFGS method is ap-
plied to the expression Eρ

ODT(X) = E1
ODT(X, T0) at the current point X0, where

T0 = DT (X0), and update it to X1 with a smaller value E1
ODT(X1, T0). Suppose

that DT (X1) �= DT (X0), i.e., there has been a connectivity change, for otherwise
the nonsmoothness is not an issue. Then, the new location X1 can still be kept as
a feasible, energy decreasing configuration, because, due to the Delaunay consistency
property, the true ODT energy at X1, which is Eρ

ODT(X1) = E2
ODT(X1, DT (X1)), is

smaller than E1
ODT(X1, T0) and therefore also smaller than Eρ

ODT(X0). That is, the
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L-BFGS method can safely update the variable mesh vertices X across pieces of the
domain Ωn with different connectivities and still ensure an energy decrease and fast
convergence.

The following algorithm optimizes a 3D mesh by minimizing Eρ
ODT. The input

is a background density function ρ and a 3D domain Ω, represented by its boundary
∂Ω.

Algorithm 1. Quasi-Newton algorithm for ODT.

(1) Compute a remesh S of ∂Ω with density ρ
(2) initialize X(0)

while ‖∇Eρ
ODT(X

(k))‖ > ε do

(3) Compute the constrained Delaunay triangulation of X(k)

(4) Compute ∇Eρ
ODT

(5) Compute p(k) using the L-BFGS update rule
(6) X(k+1) ← X(k) + p(k)

end

To facilitate reproducing our results, we further detail each step of the algorithm:

(1) We use the method in [33].
(2) X(0) is initialized with the vertices of S and additional points randomly sam-

pled in the interior of S with probability ρ.
(3) Eρ

ODT(X, T ) is Delaunay consistent with respect to the CDT. Namely, the
CDT of Ω with vertices in X minimizes the Eρ

ODT(X, T ) among all con-
strained triangulations of X [28]. To compute the constrained Delaunay tri-
angulation, we use the method in [30].

(4) See (3.1) and the complete formula in section 4.2. The vertices of the bound-
ary S are “locked” by zeroing the components of the gradient that correspond
to their coordinates.

Now we compare the efficiency of the AVV method and the L-BFGS method.
Refer to the mesh model with uniform density in Figure 6. Here the input is a
closed mesh enclosing a 3D domain. Additional points are randomly inserted for
initialization. The two methods are run starting from the same random initialization.
The norms of the gradients and the energies by these two methods are plotted in
Figure 6(d), (e), which show that the L-BFGS method is stable and converges faster
than the AVV method. With the stopping criterion ‖∇E(X)‖ ≤ 10−7, the L-BFGS
method finishes in 122 iterations using 80.02 seconds, while the AVV method finishes
in 499 iterations using 265.67 seconds.

The next set of data shows that the L-BFGS method also tends to converge
to an energy level lower than the one obtained with the AVV method. Figure 7
shows the distributions of the local minima obtained by the AVV method and the
L-BFGS method applied to the mesh model in Figure 6, each 200 times, with 200
random initializations. In each of these 200 tests, the L-BFGS method yields a lower
energy than the AVV method does. Thus, we may say that L-BFGS usually produces
triangulations of slightly better quality than the AVV method; this is illustrated by
the distributions of the dihedral angles and radius ratios of the triangulations, as
shown in Figure 6(f), (g) for the mesh in Figure 6(a). Here the radius ratio, which
is the ratio of the inscribed sphere radius to the circumscribed sphere radius of a
tetrahedron, has been multiplied by 3 for normalization.
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(a) Input boundary (b) Triangulation by L-BFGS
optimization
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Fig. 6. Convergence comparison. (a) Input boundary mesh; (b) tetrahedral mesh (with 18,083
vertices and 91,025 tetrahedra) by the L-BFGS method (122 iterations in 80.02s with final energy
4.0296 × 102); (c) ‖∇EODT ‖ versus number of iterations of selected method; AVV method finishes
in 499 iterations using 265.67 seconds with final energy 4.0411 × 102; (d) EODT versus number
of iterations of selected method; (e) number of vertices changing connectivity versus number of
iterations of the L-BFGS method; (f) dihedral angle distribution; and (g) radius ratios distribution.
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with 200 random initializations. The average values of local minima obtained by the AVV method
and the L-BFGS method are 4.0421× 102 and 4.0292 × 102, respectively.
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(a) Non-uniform triangulation
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Fig. 8. Weighted ODT energies. (a) Triangulation (4k vertices) generated by the L-BFGS
method (178 iterations in 194.4 seconds). (The tetrahedra are color-coded in accordance to their
average edge lengths.) (b) Gradient of energy versus number of iterations of selected method. (c)
Energy value versus number of iterations of selected method. (d) Zoom-in view of the energy graph
of AVV method in (c).

Besides efficiency improvement, the L-BFGS method ensures monotonic decrease
of the ODT energy in (2.5). Figure 8 shows a mesh obtained by minimizing the

ODT energy with the density ρ(x) = e−20(x2+y2+z2) +0.05 sin2(πx) sin2(πy) sin2(πz).
Here, the domain is a cube centered at the origin with an edge length of 2. The
tetrahedra are color-coded in accordance to their average edge lengths. The norm of
gradient and the energy are plotted in Figure 8(b)–(d). We see that the L-BFGS
method decreases the energy value monotonically and is terminated with its gradient
satisfying ‖∇EODT‖ ≤ 10−6, while the energy value of the AVV exhibits oscillation,
as shown in the zoom-in view in Figure 8(d). Here the numerical integration method
over simplices from [14] is used to evaluate the gradient in (3.1) and the energy in (2.5).

The fast convergence of Newton-type methods is also confirmed in [3]. They used
the approximate gradient and the Hessian matrix in Newton iterations to speed up the
optimization. The gradient is evaluated by one-point numerical quadrature, and the
Hessian matrix is approximated by a graph Laplacian. The time-consuming effort of
this method is the iterative computation of the inverse of the Hessian. In Figure 9,
we run the L-BFGS iteration and the approximated Newton [3] iteration 50 times,
respectively, in a sphere with quadratic density ρ(x) = x2. The gradient used in the
L-BFGS method is exactly computed by (3.1). We can see that L-BFGS converges
faster, as shown in Figure 9(c). And for each iteration, the approximated Newton
method takes twice as long as L-BFGS takes.

4.2. Approximate computation of Eρ
ODT and ∇Eρ

ODT. If the density func-
tion ρ(x) is simple, like the quadratic density in Figure 9, we can compute the energy
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(a) Initial mesh (60k vert.) (b) L-BFGS
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Method Eρ
ODT ‖∇Eρ

ODT ‖ avg. radius ratio time (sec.) per iter.
L-BFGS 1.21037 1.369e-5 0.8910 3.04

Appro. Newton 1.23069 7.294e-4 0.8685 6.13

(d) Statistics of comparison

Fig. 9. Comparing L-BFGS and the approximated Newton method in [3]. The initial points
are randomly distributed in the sphere according to the density function ρ(x) = x2.

Eρ
ODT and its gradient ∇Eρ

ODT precisely. For general density, the numerical integra-
tion method in [14] can be used to approximate the integral with sufficient precision.
(See the example in Figure 8.) If the density varies smoothly in a tetrahedron, we
can approximate it by linear interpolation, thus achieving fast computation.

Noting that fI(x) ≥ x2, the ODT energy in (2.5) can be written as

Eρ
ODT(X) =

∑
τ∈DT (X)

∫
τ

ρ(x)fI(x)dx −
∫
Ω

ρ(x)x2dσ.

We omit the computation of the second term in the above formula which is a constant
for a fixed domain Ω.

Theorem 4.1. Suppose a tetrahedron τ is specified by its four vertices as xi,
where i = 0, . . . , 3. Approximating ρ(x) by linear interpolation in each tetrahedron,
one has

(4.1)
∑

τ∈DT (X)

∫
τ

ρ(x)fI(x)dx ≈
1

20

∑
τ∈DT (X)

|τ |

⎛
⎝ 3∑

i,j=0

ρiwj +

3∑
i=0

ρiwi

⎞
⎠,

where wi = ‖xi‖2, ρi = ρ(xi).
Proof. Let λ = (λ0, λ1, λ2, λ3)

T denote the barycentric coordinate of a point x in
τ ; then we have

(4.2) x =

3∑
i=0

λixi, fI(x) =

3∑
i=0

λiwi, ρ(x) ≈
3∑

i=0

λiρi.

Plugging the above formula into the integral in (4.1), we have

∫
τ

ρ(x)fI(x)dx ≈ 6|τ |
3∑

i,j=0

ρiwj

∫
τ̂

λiλjdλ(4.3)

=
|τ |
20

⎛
⎝ 3∑

i,j=0

ρiwj +
3∑

i=0

ρiwi

⎞
⎠ .
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The last equation is obtained by using the formula for integrating a polynomial on
the canonical tetrahedron [18],∫

τ̂

λα1
1 λα2

2 λα3
3 dλ =

α1!α2!α3!

(3 +
∑3

i=1 αi)!
,

where τ̂ = {(λ1, λ2, λ3) ∈ R
3|
∑3

i=1 λi � 1;λi � 0, i = 1, 2, 3}. Summing (4.3) from
all tetrahedra gives the result.

Let (xi, yi, zi), i = 0, . . . 3, denote the coordinates of vertices xi’s of a tetrahedron
τ . For any point x = (x, y, z) in tetrahedron τ , fI(x) satisfies the following equation:

(4.4) det(M) = 0, where M =

⎛
⎜⎜⎜⎜⎝

x x0 x1 x2 x3

y y0 y1 y2 y3
z z0 z1 z2 z3

fI(x) w0 w1 w2 w3

1 1 1 1 1

⎞
⎟⎟⎟⎟⎠ .

Thus we get

fI(x) =

(
M1

M4
,−M2

M4
,
M3

M4

)
· x+

M5

M4
,(4.5)

where Mi is the (i, 1) minor of matrix M. We then compute ∇Eρ
ODT by the following

formula.
Theorem 4.2. Approximating ρ(x) by linear interpolation in τ , one has

∂Eρ
ODT(X)

∂x0
≈ 1

120

∑
τ∈Ω0

(12x0|τ | −M1)

(
3∑

i=0

ρi + ρ0

)
,(4.6)

where Ω0 is the 1-ring neighborhood of vertex x0.
Proof. We first compute the derivative of fI with respect to the first coordinate

x0 of the vertex x0. From (4.5), we have

∂fI
∂x0

= (m1,−m2,m3) · x+m5,(4.7)

where mi =
M ′

iM4−MiM
′
4

M2
4

and M ′
i = ∂Mi

∂x0
. On the other hand, according to (4.5), it

obviously holds that

‖xi‖2 =

(
M1

M4
,−M2

M4
,
M3

M4

)
· xi +

M5

M4
, i = 0, . . . 3.

Differentiating both sides of the above equations by x0, we get{
2x0 = (m1,−m2,m3) · xi +

M1

M4
+m5, i = 0,

0 = (m1,−m2,m3) · xi +m5, i = 1, 2, 3.

Substituting x =
∑3

i=0 xiλi into (4.7), we get

∂fI
∂x0

=

(
2x0 −

M1

M4

)
λ0.
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Recalling that ρ(x) ≈
∑3

i=0 λiρi, we obtain∫
τ

ρ(x)
∂fI(x)

∂x0
dx ≈ 6|τ |

(
2x0 −

M1

M4

)∫
τ̂

3∑
i=0

ρiλiλ0dλ

=
1

120
(12x0|τ | −M1)

(
3∑

i=0

ρi + ρ0

)
.

Equation (4.6) is then obtained by using formula (3.1).
For the ODT function with constant density, say, ρ(x) ≡ 1, the formula (4.6)

provides another efficient way to compute the exact derivative of the ODT function,

∂EODT(X)

∂x0
=

1

24

∑
τ∈Ω0

(12x0|τ | −M1).

4.3. Global optimization. As the ODT energy function is nonconvex and
nonsmooth, any local search scheme, including the fast L-BFGS method presented
above, is susceptible to being stuck is a relatively poor local minimum. To address
this issue, we shall next present a global optimization method, called the global ODT
method, based on the principle of simulated annealing [19]. This global optimization
process starts each round with a given local minimizer X0, typically produced by
some local search scheme. Then by random perturbation and local optimization, a
nearby local minimizer X with lower energy value is found as the new starting point
for the next round. The perturbation to X0 is set to make the optimization jump
out the basin of the current local minimum. An appropriate magnitude of random
perturbation is crucial—if it is too small, the search will roll back to the same local
minimum, while a too-large perturbation would amount to restarting optimization all
over with a random initialization. With extensive experiments, we found that it is
effective to set the perturbation magnitude of a vertex to be 0.2 times the average
length of its incident edges.

The pseudocode of our global search scheme is given in Algorithm 2, followed by
more details about each step.

Algorithm 2. Global ODT method.

(1) m← 0,X← X0, E = Eρ
ODT(X), temperature T ← 10−4

(2) while m < M do
(3) X∗ ← perturb(X)
(4) X∗ ← L-BFGS(X∗)
(5) E∗ = Eρ

ODT(X
∗)

(6) if E∗ < E or Prob(E,E∗, T ) > Rand() then
X← X∗; E ← E∗

else
T ← 0.9T

end
(7) m← m+ 1

end
(8) X∗ ← L-BFGS(X)

The following hold:
(2) The optimization is stopped afterM iterations (M = 20 in the results herein).
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(3) Each vertex is perturbed along a random direction with a maximum magni-
tude of 0.2 times the average length of its incident edges.

(4) We run only 20 iterations of L-BFGS (Algorithm 1, steps (3) to (6), since a
highly accurate minimizer is not necessary at this stage.

(6) X∗ is accepted as the new starting point of the next round if its ODT
energy E∗ is lower than E; otherwise X∗ is accepted with the probability
Prob(E,E∗, T ) = exp((E − E∗)/T ).

(8) Finally, 30 iterations of L-BFGS are applied again to further minimize X.

We first use a 2D mesh example to allow visual appreciation of the improvement
brought about by the global ODT method. As shown in Figure 10, starting from the
same random initialization, the 2D mesh obtained by the global ODT method (Fig-
ure 10(c)) is much better than the one obtained by the AVV method (Figure 10(a)),
in terms of angle distributions (Figure 10(b)). The ODT energies of the sequence of
local minima obtained in consecutive rounds are shown in Figure 10(d).

Next we consider the 3D meshing example shown in Figure 11. Here 20 rounds
of the global ODT method are applied to the mesh model in Figure 6, finishing in
246.21 seconds with energy value 3.9799 × 102, which is much lower than the range
[4.0341×102, 4.0432×102] of the local minima produced by 200 repeated applications
of the AVV method, as shown in Figure 7. In comparison, the AVV result (the same
as in Figure 6) takes 499 iterations using 265.67 seconds with final energy 4.0411×102.
Accordingly, the mesh quality has improved remarkably in terms of both the radius
ratio and dihedral angle distributions. Furthermore, the number of slivers is further
reduced by global optimization, even though it is already quite small by the AVV
method.

5. Implementation and evaluation. Our algorithm is implemented in C++.
We use the TetGen library [30] for generating 3D Delaunay triangulation. All the
experiments are conducted on a laptop computer with a 2.66 GHz Intel processor and
4 GB memory.

5.1. Boundary handling. A tetrahedral mesh needs to conform with the do-
main boundary, which is a triangle mesh surface. Boundary handling refers to the
way that those mesh vertices on the domain boundary are determined. In the NODT
method by Tournois et al. [32], the positions of the boundary vertices are computed
by maintaining the ODT circumsphere property and then projected onto the domain
boundary. The biggest problem with this treatment is that the ODT energy, in gen-
eral, is not decreased by an NODT iteration. To resolve this issue, we propose to first
compute a good initial meshing of the domain boundary before minimizing the ODT
energy. We use the restricted CVT method [33] to obtain a high-quality remeshing of
the boundary. With the boundary mesh fixed, the constrained Delaunay triangulation
is used in the ODT computation.

Figure 12 shows a comparison of the NODT method, the L-BFGS method, and
the global ODT method. The global ODT method produces a triangulation of the
best quality with the smallest number of slivers. As mentioned, the NODT method
does not ensure the monotonic decrease of the ODT energy, as shown in Figure 12(b),
and stops with the energy 0.5436, which is higher than those of the L-BFGS method
and the global ODT method, which are 0.5347 and 0.5228, respectively.

5.2. Sliver-free graded mesh. Mesh gradation is controlled by a density func-
tion of the ODT energy function. We adopt the following method proposed in [1] for
the automatic design of density functions. First, a sizing function μ(x) is defined in
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Fig. 10. Comparison in 2D triangulations of 1k vertices. (a) The triangulation by the AVV
(907 iterations in 8.748 seconds, final EODT = 8.336 × 10−2); (c) angle distributions; (b) the mesh
by the global ODT method (100 global iterations in 19.351 seconds, final EODT = 7.946×10−2); (d)
energy plot of the global ODT method.
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Fig. 11. Comparison of the local AVV method and the global ODT method. Top: Slivers in the
meshes by the two methods. Bottom: Radius ratio distributions and dihedral angle distributions of
the two meshes.
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Fig. 12. Comparing NODT [32], L-BFGS (Algorithm 1), and global ODT (Algorithm 2). (a) 3D
triangulations by NODT, L-BFGS, and global ODT; slivers are shown for dihedral angle bounds of
10◦ and 20◦, respectively; (b) energy graphs of NODT and L-BFGS; (c) radius ratio distributions
and dihedral angle distributions.

the domain based on the local feature size. An example of the sizing function is shown
in Figure 13, where blue and red indicate the minimum and maximum values of the
sizing function. Then a density function is defined as 1/μ5, according to the fact

that ODTs tend to equidistribute the weighted volume
∫
τ ρ

d
d+2dx [4]. The density

function used in the restricted CVT method for boundary surface remeshing is set to
1/μ4. We first assign the density function values at the grid points of a uniform grid
covering the domain and reconstruct the function by trivariate cubic spline interpo-
lation. For fast computation of the ODT energy in (2.5) and the gradient in (3.1), we
approximate the density function in a tetrahedral by linear interpolation. Figure 13
shows a mesh obtained by the global ODT method. The smooth gradation of the
mesh is in agreement with the density function designed automatically by the above
method.

Despite the use of the global ODT method, the slivers (<10 degrees) still exist,
because of the difficulty in computing the true global minimizer. In [32, 31], the sliver
perturbation method is proposed. It can effectively remove slivers, though it may not
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(a) (b)

Fig. 13. Automatic design of density function from the sizing field. (a) Input boundary mesh;
(b) triangulation by global ODT with distribution of vertices consistent with density function. Dis-
tributions of radius ratios are shown on the right.

Fig. 14. Remeshing a CAD model. Left: input boundary mesh; right: triangulation by global
ODT and sliver perturbation. Minimal dihedral angle= 17.6, maximal dihedral angle = 155.31,
average radius ratio = 0.8868.

Fig. 15. Input mesh model (left) and the tetrahedral mesh with 277k tetrahedra (right) generated
by our hybrid local/global optimization; minimal dihedral angle= 15.22, maximal dihedral angle =
157.45, average radius ratio = 0.8715.

decrease the ODT energy. This method can be integrated with our ODT method
by using it as a postprocessing step. Figures 14 and Figure 15 show two meshes
obtained by the global ODT method and further optimized by sliver perturbation.
This combination produces meshes with improved angle distribution dihedral and that
is free of slivers. (All the dihedral angles are between 15 degrees and 158 degrees.)
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(a) Interleaved (b) Global ODT (c) Stellar

Fig. 16. Moai model. Meshes by (a) interleaved method [32] and (b) our method. Red tetrahedra
and blue tetrahedra are slivers with angle bounds 10◦ and 20◦, respectively. (c) The sliced view of
the mesh by Stellar [20].

Fig. 17. Moai model: statistics of different methods.

We now compare the global ODT method with the interleaved method [32] and
the Stellar method [20], using a model with uniform density in Figure 16. Stellar can
drastically increase the smallest dihedral angles in a mesh without paying much at-
tention to improving angle distribution. Statistics are shown in Figure 17. The global
ODT method and Stellar take as input the optimized boundary mesh and random
initialization of the interior vertices. The interleaved method operates by alternat-
ing Delaunay refinement and ODT optimization. Sliver perturbation is applied as a
postprocessing with an angle bound of 20 degrees. Again, the global ODT method
yields the best triangulation in terms of the dihedral angle and radius ratio distribu-
tions. When postprocessed by sliver perturbation, the global ODT method produces a
high-quality mesh free of slivers. Although Stellar improves the meshes and results in
all dihedral angles between 30◦ and 150◦, it does little to help produce evenly spaced
mesh vertices, thus resulting in many needle-shaped tetrahedra (see Figure 16(c)).

5.3. Comparison of ODT and CVT. It has been observed [1, 32] that the
ODT method is more effective than the CVT method in suppressing slivers. That
conclusion is based on two observations: (1) The CVT method, with its energy defined
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Fig. 18. Comparing CVT and ODT on 2D triangulations.

in the dual Voronoi domain, only tries to make the mesh vertices evenly spaced, which
is not sufficient for avoiding slivers; that is, the CVT energy does not penalize slivers.
(2) On the other hand, the ODT energy function, formulated in the prime space of
triangulation, can be shown to optimize certain shape measurements of tetrahedral
elements (see equation (7) in [1]). Those works [1, 32] also present experimental com-
parisons to confirm this conclusion using the Lloyd method for CVT computation and
the AVV method for ODT computation.

Given the popularity of the CVT method in mesh generation and the superior per-
formance of the ODT method in sliver suppression, it would be instructive to provide
further analysis and understanding to supplement the above observations. First, we
note that for 2D meshes, well-spaced mesh vertices are sufficient to guarantee triangle
elements of good quality. Hence, the ODT method does not have a real advantage
over the CVT method in 2D mesh generation or surface remeshing, as shown by the
results in Figures 18(a) and (b). Since the ODT method and the CVT method handle
boundary vertices in different ways, for a fair comparison, evenly spaced boundary
vertices are provided before optimization and fixed during optimization. The better
quality of the CVT result seen here can be attributed to the C2 smoothness of the
CVT energy (versus the nonsmoothness of the ODT energy), which makes it easier
for the CVT method to produce a local minimizer of good mesh quality.

The situation with 3D triangulations is more complicated. According to the cel-
ebrated Gersho conjecture [16], in theory the tetrahedral mesh given by the global
minimizer of the CVT energy should also be free of slivers. Therefore, the experimen-
tal observation that the CVT is inferior to the ODT in sliver suppression implies that
the CVT energy function is rather insensitive to the presence of slivers, in the sense
that it allows local minimizers that contain a large number of slivers. This is in line
with the conclusion in [1] that the CVT energy does not penalized slivers. Further-
more, the ability of the CVT method in sliver suppression is clearly dependent on the
particular computational method used. In this regard, we compare in Figure 19 the
performance of the ODT method and the CVT method for 3D meshing, both using
the fast L-BFGS method and simulated annealing-based global search. The results
again confirm that the ODT is much better at sliver suppressing.
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Fig. 19. Comparing CVT and ODT. Slivers are shown for a dihedral angle bound of 10◦.
(a) Triangulations by local CVT (top) and local ODT (bottom); (b) triangulations by global CVT
(top) and global ODT (bottom); (c) radius ratio distributions; (d) dihedral angle distributions.

However, we note that the tetrahedral mesh by the CVT method has better dis-
tributions of dihedral angles than that by the ODT method, as shown in Figures 19(c)
and (d). This suggests that it would pay off to apply the following scheme that com-
bines the strength of both ODT and CVT. Given an initial set of random vertices
in a 3D domain, first run the CVT method to obtain a tetrahedra mesh with good
angle distribution, and then run the ODT method on it to reduce its slivers, fol-
lowed by sliver perturbation to remove all the remaining slivers. Figure 20 shows the
intermediate results of such a procedure.

5.4. Numerical examples. In the process of solving a partial different equation
by finite element methods, the shape of the elements has strong influence on the finite
element solutions. We here consider the 3D Poisson problem, as it has a large number
of applications in practice. Let Ω be a 3D domain with boundary ∂Ω. We look for
an approximate solution of the following Poisson equation by using the linear finite
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Fig. 20. Combining CVT and ODT methods. After applying ODT optimization to the result
of the CVT method, the number of slivers is reduced from 195 to 16, and the average radius ratio
rises from 0.8930 to 0.9085.

Table 1

Comparison of error norms for Poisson problem with different meshes.

Method
Mesh generation (#vert. = 9009) Error norm

Avg. rad. ratio min∠ max∠ Time (s) L2 H1

Structured 0.596 30.00o 135.00o 0.017 2.729e−3 2.011e−1
TetGen 0.781 7.82o 164.99o 0.572 2.159e−3 1.499e−1
Gmsh 0.808 16.49o 150.29o 2.011 1.953e−3 1.468e−1
GHS3D 0.845 22.882 136.71o 0.483 1.919e−3 1.298e−1
NetGen 0.872 25.98o 138.02o 11.026 1.805e−3 1.318e−1
Ours 0.904 15.13o 152.31o 92.127 1.601e−3 1.271e−1

element method:

−∇2u(x) = f(x) in Ω,

u(x) = g(x) on ∂Ω.

We create triangulations of Ω with different methods and compare the approximate
errors of the corresponding finite element solutions. To compare the approximate
solution uh, we solve the Poisson equation with the exact solution uexc(x) = xyz
on Ω = (−1, 1)3. The approximate error is computed in both the L2-norm and the
H1-seminorm:

‖uexc − uh‖L2 =

√∫
Ω

(uexc − uh)2dx, ‖uexc − uh‖H1 =

√∫
Ω

‖∇(uexc − uh)‖2dx.

For tetrahedral mesh generation, we explore a number of widely used tools, in par-
ticular, TetGen [30], GHS3D [15], Gmsh [17], and NetGen [26]. Table 1 shows the
statistics of the qualities of the meshes generated by different methods and the error
norms of the solutions. The number of vertices is prespecified and a uniform sizing
function is used in all the methods. The structured mesh is constructed by connect-
ing the regular grid points in the cube. We can see that the accuracy of the solution
increases along with the improvement of the mesh quality indicated mainly by the av-
erage value of radius ratios. Our method is capable of generating high-quality meshes
benefiting from the global optimization involved in the algorithm. On the other side,
our method is less efficient than the most efficient state of the art (e.g., the software
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Table 2

Running times.

Model # vert. # tet.
Time (min.)

Initialization Global ODT Sliver perturbation

Figure 6 18k 91k 1.5 4.3 0.25

Figure 13 43k 206k 5.2 16.1 1.21

Figure 14 17k 82k 1.3 3.9 0.23

Figure 15 75k 404k 6.3 26.7 1.42
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Fig. 21. Comparing the time of computing CDT and DT.

GHS3D from Distene [15] or the advancing front methods in [25, 23]), due to the high
computational complexity involved in the global optimization.

5.5. Timing. The running time for each example discussed is given in Table 2.
It consists of three parts. The initialization part includes the time for calling the
restricted CVT method [33] to compute the optimized boundary mesh. The angle
bound in sliver perturbation is set to 15 degrees. In all these examples, at most 20
rounds of the global ODT method are applied; in each round, 20 iterations of the
L-BFGS method are applied. The most time-consuming part of the ODT method is
building the constrained Delaunay triangulation. We test the algorithms of CDT and
DT implemented in TetGen [30] with different numbers of points, sampled in a bunny
model (Figure 21). The CDT algorithm is about 20% slower than computing DT.

6. Conclusion. In this paper, we have discussed some variations of ODT-based
mesh generation when a density function is used to specify a graded mesh. From the
combinatorial point of view, as compared with the initial formulation in [2], the en-
ergy function Eρ

ODT that we used is optimized by the standard Delaunay triangulation,
which can be constructed effectively using existing software packages. From the nu-
merical point of view, the objective function that we minimize and the quasi-Newton
method show faster convergence than in previous work [1] due to more regularity in
the objective function. As compared with [3], which uses the same objective function
as here, we show that a more accurate estimation of the gradient improves the perfor-
mances. In addition, based on the observation that the ODT energy is nonsmooth and
nonconvex, we show that global optimization further optimizes the ODT energy and
achieves high-quality resulting meshes with fewer slivers and better dihedral angle
and radius ratio distributions.
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Considering the limitations of our method, some further research possibilities are
suggested below:

(1) The objective function Eρ
ODT introduced here together with the hybrid op-

timization algorithm improves the performance and quality of graded mesh
generation. We cannot ensure that the global minimum is obtained, but we
give experimental results that show the practical benefit of our mixed New-
ton/global optimization framework. However, slivers are not totally elimi-
nated, thus requiring a postprocessing with sliver perturbation [31].

(2) Our method needs to fix the vertices on the boundary. Note that a graded
meshing of the boundary can be precomputed (e.g., using [33]). We use the
constrained Delaunay triangulation in the ODT optimization. However, the
constrained Delaunay triangulation may not exist in some extreme cases.
Since the points are nearly evenly distributed in the domain during the ODT
optimization, we never failed to build the constrained Delaunay triangulations
in our experiments.

(3) The objective function is C0 only, which is better than the discontinuous
functions used in previous work but still does not fulfill the C2 theoretical
requirement of the L-BFGS algorithm. To further improve both the speed and
the quality of the results, a unified, C2 sliver-eliminating objective function
remains to be found.

In another perspective, efficient optimization methods for anisotropic mesh gen-
eration are also an important research topic.

Acknowledgment. The surface models are courtesy of Aim@Shape.

REFERENCES

[1] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun, Variational tetrahedral meshing,
ACM Trans. Graphics, 24 (2005), pp. 617–625.

[2] L. Chen, Mesh smoothing schemes based on optimal delaunay triangulations, in Proceedings
of the 13th International Meshing Roundtable, 2004, pp. 109–120.

[3] L. Chen and M. Holst, Efficient mesh optimization schemes based on optimal Delaunay
triangulations, Comput. Methods Appl. Mech. Engrg. 200 (2011), pp. 967–984.

[4] L. Chen, P. Sun, and J. Xu, Optimal anisotropic meshes for minimizing interpolation errors
in Lp norm, Math. Comp., 76 (2007), pp. 179–204.

[5] L. Chen and J. Xu, Optimal Delaunay triangulations, J. Comput. Math., 22 (2004),
pp. 299–308.

[6] L. F. Diachin, P. Knupp, T. Munson, and S. Shontz, A comparison of two optimization
methods for mesh quality improvement, Eng. Comput., 22 (2006), pp. 61–74.

[7] Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi tessellations: Applications and
algorithms, SIAM Rev., 41 (1999), pp. 637–676.

[8] Q. Du and D. Wang, Tetrahedral mesh generation and optimization based on centroidal
Voronoi tessellations, Internat. J. Numer. Methods Engrg., 56 (2003), pp. 1355–1373.

[9] Q. Du and D. Wang, Anisotropic centroidal Voronoi tessellations and their applications,
SIAM J. Sci. Comput., 26 (2005), pp. 737–761.

[10] H. Flanders, Differentiation under the integral sign, Amer. Math. Monthly, 80 (1973),
pp. 615–627.

[11] L. A. Freitag and P. M. Knupp, Tetrahedral element shape optimization via the Jaco-
bian determinant and condition number, in Proceedings of the 8th International Meshing
Roundtable, 1999, pp. 247–258.

[12] L. A. Freitag and C. Ollivier-gooch, A comparison of tetrahedral mesh improvement tech-
niques, in Proceedings of the 5th International Meshing Roundtable, 1996, pp. 87–100.

[13] P. J. Frey and P.-L. George, Mesh Generation: Application to Finite Elements, Wiley,
London, 2000.

[14] A. Genz and R. Cools, An adaptive numerical cubature algorithm for simplices, ACM Trans.
Math. Softw., 29 (2003), pp. 297–308.



A954 Z. CHEN, W. WANG, B. LÉVY, L. LIU, AND F. SUN
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